649 research outputs found

    A Multidisciplinary Approach to Predicting Aggression in Children, Adolescents, and Adults: Exploring the Role of Cardiovascular Psychophysiology, Neuropsychology, and Psychopathy

    Get PDF
    This thesis explored the function of biological, personality, and cognitive factors as predictors of violence and aggression in children, adolescents, and adults. Chapter 2 sought to understand biopsychosocial profiles of aggressive groups of children (N = 110). Children who engaged in more severe forms of aggressive behavior were highest in psychopathic traits, and most distinct from other aggressive and nonaggressive children on biological indices of prefrontal functioning. This group of children displayed fewer executive functioning deficits compared to other aggressive children, which may explain their ability to implement planned aggression. Chapter 3 included 60 adolescents from Emotional and Behavioral Difficulties (EBD) schools and 62 adolescents from a stratified community school sample (N = 696). The aim was to test the association between callous-unemotional (CU) traits and fearlessness using cardiovascular measures of sympathetic (pre-ejection period) and parasympathetic reactivity (respiratory sinus arrhythmia) during fear induction, and self-report measures of fear. Adolescents high in CU traits, from both samples, exhibited high levels of conduct problems and aggression. No group differences emerged on self-report of fear, but the high CU group did display a unique autonomic profile when experiencing fear. This pattern of biological reactivity, a coactivation of sympathetic and parasympathetic activity, may suggest adolescents high in CU traits are better able to manage fearful situations by remaining physiologically calm yet alert. This may explain why individuals with CU traits have been previously characterized as fearless. Chapter 4 included 182 female offenders, and aimed to predict misconducts over 9-months. Callous and antisocial psychopathic traits best predicted violence, while impulsivity and antisocial psychopathic traits predicted nonviolent misconducts. The key findings across all chapters show psychopathic traits, regardless of age and population type (forensic, clinical, and community), were related to high levels of aggressive and antisocial behavior, and a host of biological and cognitive differences

    Comparative genomics of Shiga toxin encoding bacteriophages

    Get PDF
    Background Stx bacteriophages are responsible for driving the dissemination of Stx toxin genes (stx) across their bacterial host range. Lysogens carrying Stx phages can cause severe, lifethreatening disease and Stx toxin is an integral virulence factor. The Stx-bacteriophage vB_EcoP-24B, commonly referred to as 24B, is capable of multiply infecting a single bacterial host cell at a high frequency, with secondary infection increasing the rate at which subsequent bacteriophage infections can occur. This is biologically unusual, therefore determining the genomic content and context of 24B compared to other lambdoid Stx phages is important to understanding the factors controlling this phenomenon and determining whether they occur in other Stx phages. Results The genome of the Stx2 encoding phage, 24B was sequenced and annotated. The genomic organisation and general features are similar to other sequenced Stx bacteriophages induced from Enterohaemorrhagic Escherichia coli (EHEC), however 24B possesses significant regions of heterogeneity, with implications for phage biology and behaviour. The 24B genome was compared to other sequenced Stx phages and the archetypal lambdoid phage, lambda, using the Circos genome comparison tool and a PCR-based multi-loci comparison system. Conclusions The data support the hypothesis that Stx phages are mosaic, and recombination events between the host, phages and their remnants within the same infected bacterial cell will continue to drive the evolution of Stx phage variants and the subsequent dissemination of shigatoxigenic potentia

    Characterisation of Bacteriophage-Encoded Depolymerases Selective for Key Klebsiella pneumoniae Capsular Exopolysaccharides.

    Get PDF
    Capsular polysaccharides enable clinically important clones of Klebsiella pneumoniae to cause severe systemic infections in susceptible hosts. Phage-encoded capsule depolymerases have the potential to provide an alternative treatment paradigm in patients when multiple drug resistance has eroded the efficacy of conventional antibiotic chemotherapy. An investigation of 164 K. pneumoniae from intensive care patients in Thailand revealed a large number of distinct K types in low abundance but four (K2, K51, K1, K10) with a frequency of at least 5%. To identify depolymerases with the capacity to degrade capsules associated with these common K-types, 62 lytic phage were isolated from Thai hospital sewage water using K1, K2 and K51 isolates as hosts; phage plaques, without exception, displayed halos indicative of the presence of capsule-degrading enzymes. Phage genomes ranged in size from 41-348 kb with between 50 and 535 predicted coding sequences (CDSs). Using a custom phage protein database we were successful in applying annotation to 30 - 70% (mean = 58%) of these CDSs. The largest genomes, of so-called jumbo phage, carried multiple tRNAs as well as CRISPR repeat and spacer sequences. One of the smaller phage genomes was found to contain a putative Cas type 1E gene, indicating a history of host DNA acquisition in these obligate lytic phage. Whole-genome sequencing (WGS) indicated that some phage displayed an extended host range due to the presence of multiple depolymerase genes; in total, 42 candidate depolymerase genes were identified with up to eight in a single genome. Seven distinct virions were selected for further investigation on the basis of host range, phage morphology and WGS. Candidate genes for K1, K2 and K51 depolymerases were expressed and purified as his6-tagged soluble protein and enzymatic activity demonstrated against K. pneumoniae capsular polysaccharides by gel electrophoresis and Anton-Paar rolling ball viscometry. Depolymerases completely removed the capsule in K-type-specific fashion from K. pneumoniae cells. We conclude that broad-host range phage carry multiple enzymes, each with the capacity to degrade a single K-type, and any future use of these enzymes as therapeutic agents will require enzyme cocktails for utility against a range of K. pneumoniae infections

    Direct Whole-Genome Sequencing of Cutaneous Strains of Haemophilus ducreyi.

    Get PDF
    Haemophilus ducreyi, which causes chancroid, has emerged as a cause of pediatric skin disease. Isolation of H. ducreyi in low-income settings is challenging, limiting phylogenetic investigation. Next-generation sequencing demonstrates that cutaneous strains arise from class I and II H. ducreyi clades and that class II may represent a distinct subspecies

    Novel Subclone of Carbapenem-Resistant Klebsiella pneumoniae Sequence Type 11 with Enhanced Virulence and Transmissibility, China.

    Get PDF
    We aimed to clarify the epidemiologic and clinical importance of evolutionary events that occurred in carbapenem-resistant Klebsiella pneumoniae (CRKP). We collected 203 CRKP causing bloodstream infections in a tertiary hospital in China during 2013-2017. We detected a subclonal shift in the dominant clone sequence type (ST) 11 CRKP in which the previously prevalent capsular loci (KL) 47 had been replaced by KL64 since 2016. Patients infected with ST11-KL64 CRKP had a significantly higher 30-day mortality rate than other CRKP-infected patients. Enhanced virulence was further evidenced by phenotypic tests. Phylogenetic reconstruction demonstrated that ST11-KL64 is derived from an ST11-KL47-like ancestor through recombination. We identified a pLVPK-like virulence plasmid carrying rmpA and peg-344 in ST11-KL64 exclusively from 2016 onward. The pLVPK-like-positive ST11-KL64 isolates exhibited enhanced environmental survival. Retrospective screening of a national collection identified ST11-KL64 in multiple regions. Targeted surveillance of this high-risk CRKP clone is urgently needed

    Diagnostics for Yaws Eradication: Insights From Direct Next-Generation Sequencing of Cutaneous Strains of Treponema pallidum.

    Get PDF
    Background: Yaws-like chronic ulcers can be caused by Treponema pallidum subspecies pertenue, Haemophilus ducreyi, or other, still-undefined bacteria. To permit accurate evaluation of yaws elimination efforts, programmatic use of molecular diagnostics is required. The accuracy and sensitivity of current tools remain unclear because our understanding of T. pallidum diversity is limited by the low number of sequenced genomes. Methods: We tested samples from patients with suspected yaws collected in the Solomon Islands and Ghana. All samples were from patients whose lesions had previously tested negative using the Centers for Disease Control and Prevention (CDC) diagnostic assay in widespread use. However, some of these patients had positive serological assays for yaws on blood. We used direct whole-genome sequencing to identify T. pallidum subsp pertenue strains missed by the current assay. Results: From 45 Solomon Islands and 27 Ghanaian samples, 11 were positive for T. pallidum DNA using the species-wide quantitative polymerase chain reaction (PCR) assay, from which we obtained 6 previously undetected T. pallidum subsp pertenue whole-genome sequences. These show that Solomon Islands sequences represent distinct T. pallidum subsp pertenue clades. These isolates were invisible to the CDC diagnostic PCR assay, due to sequence variation in the primer binding site. Conclusions: Our data double the number of published T. pallidum subsp pertenue genomes. We show that Solomon Islands strains are undetectable by the PCR used in many studies and by health ministries. This assay is therefore not adequate for the eradication program. Next-generation genome sequence data are essential for these efforts

    Viability PCR shows that non-ocular surfaces could contribute to transmission of Chlamydia trachomatis infection in trachoma.

    Get PDF
    BACKGROUND: The presence of Chlamydia trachomatis (Ct) DNA at non-ocular sites suggests that these sites may represent plausible routes of Ct transmission in trachoma. However, qPCR cannot discriminate between DNA from viable and non-viable bacteria. Here we use a propodium monoazide based viability PCR to investigate how long Ct remains viable at non-ocular sites under laboratory-controlled conditions. METHODS: Cultured Ct stocks (strain A2497) were diluted to final concentrations of 1000, 100, 10 and 1 omcB copies/μL and applied to plastic, woven mat, cotton cloth and pig skin. Swabs were then systemically collected from each surface and tested for the presence Ct DNA using qPCR. If Ct DNA was recovered, Ct viability was assessed over time by spiking multiple areas of the same surface type with the same final concentrations. Swabs were collected from each surface at 0, 2, 4, 6, 8 and 24 hours after spiking. Viability PCR was used to determine Ct viability at each timepoint. RESULTS: We were able to detect Ct DNA on all surfaces except the woven mat. Total Ct DNA remained detectable and stable over 24 hours for all concentrations applied to plastic, pig skin and cotton cloth. The amount of viable Ct decreased over time. For plastic and skin surfaces, only those where concentrations of 100 or 1000 omcB copies/μL were applied still had viable loads detectable after 24 hours. Cotton cloth showed a more rapid decrease and only those where concentrations of 1000 omcB copies/μL were applied still had viable DNA detectable after 24 hours. CONCLUSION: Plastic, cotton cloth and skin may contribute to transmission of the Ct strains that cause trachoma, by acting as sites where reservoirs of bacteria are deposited and later collected and transferred mechanically into previously uninfected eyes

    Complete Genome Sequence and Comparative Metabolic Profiling of the Prototypical Enteroaggregative Escherichia coli Strain 042

    Get PDF
    Background \ud Escherichia coli can experience a multifaceted life, in some cases acting as a commensal while in other cases causing intestinal and/or extraintestinal disease. Several studies suggest enteroaggregative E. coli are the predominant cause of E. coli-mediated diarrhea in the developed world and are second only to Campylobacter sp. as a cause of bacterial-mediated diarrhea. Furthermore, enteroaggregative E. coli are a predominant cause of persistent diarrhea in the developing world where infection has been associated with malnourishment and growth retardation. \ud \ud Methods \ud In this study we determined the complete genomic sequence of E. coli 042, the prototypical member of the enteroaggregative E. coli, which has been shown to cause disease in volunteer studies. We performed genomic and phylogenetic comparisons with other E. coli strains revealing previously uncharacterised virulence factors including a variety of secreted proteins and a capsular polysaccharide biosynthetic locus. In addition, by using Biolog™ Phenotype Microarrays we have provided a full metabolic profiling of E. coli 042 and the non-pathogenic lab strain E. coli K-12. We have highlighted the genetic basis for many of the metabolic differences between E. coli 042 and E. coli K-12. \ud \ud Conclusion \ud This study provides a genetic context for the vast amount of experimental and epidemiological data published thus far and provides a template for future diagnostic and intervention strategies

    Rediscovering the value of families for psychiatric genetics research

    Get PDF
    As it is likely that both common and rare genetic variation are important for complex disease risk, studies that examine the full range of the allelic frequency distribution should be utilized to dissect the genetic influences on mental illness. The rate limiting factor for inferring an association between a variant and a phenotype is inevitably the total number of copies of the minor allele captured in the studied sample. For rare variation, with minor allele frequencies of 0.5% or less, very large samples of unrelated individuals are necessary to unambiguously associate a locus with an illness. Unfortunately, such large samples are often cost prohibitive. However, by using alternative analytic strategies and studying related individuals, particularly those from large multiplex families, it is possible to reduce the required sample size while maintaining statistical power. We contend that using whole genome sequence (WGS) in extended pedigrees provides a cost-effective strategy for psychiatric gene mapping that complements common variant approaches and WGS in unrelated individuals. This was our impetus for forming the “Pedigree-Based Whole Genome Sequencing of Affective and Psychotic Disorders” consortium. In this review, we provide a rationale for the use of WGS with pedigrees in modern psychiatric genetics research. We begin with a focused review of the current literature, followed by a short history of family-based research in psychiatry. Next, we describe several advantages of pedigrees for WGS research, including power estimates, methods for studying the environment, and endophenotypes. We conclude with a brief description of our consortium and its goals
    corecore